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increases sensitivity to noise and quantization. We propose a junction detector that

works by filling in gaps at junctions in edge maps. It uses the image gradient to guide

extensions of disconnected edges at junctions. A new representation for the gradient, the

bow tie map, is used to implement the endpoint growing rules, which include following

gradient ridges and using saddle points in the gradient magnitude. We demonstrate the

junction detector on real imagery. Finally, the paper discusses previous approaches to

junction detection.
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Figure 1: An image and its Canny edges. A threshold on the gradient magnitude cleaned up some

of the edges due to noise. Edges are fragmented at the T junctions.

1 Introduction

One of the goals of low level computer vision is to provide stable image features for higher level

analysis. Most work to date on feature detection has concentrated on finding edges, discontinuities in

the image intensity surface. Working with edges simplifies the image considerably; edges correspond

to such important image features as object boundaries, color changes, and illumination changes. A

feature related to edges is the junction, which we define as the intersection of three or more intensity

surfaces in the image. Junctions are usually located in images by looking for points of intersection

of three or more intensity edges.

As point-based features, junctions have many useful applications in higher level computer vi-

sion. Model-based recognition (Bolles and Cain [6], Lamdan and Wolfson [23], Huttenlocher [19],

Tucker [381) and motion (Ullman [39]) have both used point-based features to drive their matching

algorithms: recognition matches model to image and motion matches features between frames in

time. Edge labelling schemes (Guzman [15], Huffman [18], Clowes [11], Waltz [40], Mackworth [27],

Kanade [20], Chakravarty [9], Lee, et al. [25], Malik [28]) use junctions to build a three dimensional

interpretation of an edge map. Finally, grouping, roughly defined as aggregating features coming

from one object, can use junctions to group edges (Lowe [26], Beymer [4]).
"Fow

This paper focuses on the problem of finding junctions in images. Detecting junctions is an

open issue because gradient-based edge detectors, the popular edge detectors in use today, fail to

detect junctions. One edge of the junction will often be detached from the junction, leaving a small d 0
gap. Generally speaking, the gap is caused by an interaction between edge gradients at the junction ton

- some edges interfere with the detection of others. This gradient interaction is an unavoidable

consequence of smoothing the image, which is introduced by camera optics and purposefully used m/

to filter out noise. Figure 1 shows an example image and corresponding Canny [7] edges. Note the Ay Corga

fragmentation at junctions. and/or

rust. p~ota



This paper has two primary goals: to investigate why edge maps are fragmented at junctions

and to propose a new method for finding junctions. Our investigation into the failure of gradient-

based edge detectors will focus on properties of the zero crossings of the Laplacian and the second

directional derivative, two popular edge operators. Edge fragmentation at junctions, as we will

see, has two primary causes, the pairing of edges into groups of two and a sensitivity to noise and

quantization. We will use an analytical model of an n-ary junction to provide a concrete example

for analysis.

The second major focus of this paper is a new junction detection algorithm that works from

edge maps and the gradient, using the gradient to fill gaps at junctions. An analysis of the gradient

magnitude near junctions will drive the workings of our detection algorithm. We propose a new tool

for describing peaks and valleys in the gradient, the bow tie map. Our junction detection algorithm

uses the bow tie map to extend the endpoints of disconnected edges at junctions. Endpoints are

grown by following ridges or saddle points in the gradient magnitude.

This paper is organized as follows. Section two discusses the zero crossings of the Laplacian and

the second directional derivative, explaining why gradient-based edge operators fail at junctions.

Section three analyzes the gradient near junctions and introduces the bow tie map. Section four

proposes a new junction detection algorithm and shows results of the algorithm applied to real

imagery. Finally, we close with a discussion of past work on junction detection.
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2 Zero Crossings and the Gradient near Junctions

In this section, we will use an analysis of zero crossings and the image gradient to see why

gradient-based edge detectors fragment junction edges. Gradient-based edge detection schemes are

those that define edges as being local maximum of a first derivative operator, or, equivalently, a zero

crossing of a second derivative operator.1 Since gradient-based techniques take derivatives, we also

assume that the image is smoothed with a regularizing filter [37]. This smoothing step blurs the

structure of junctions and causes interaction between edge gradients, derailing edge detection there.

In this paper, the function f(z, y) will be the smoothed image intensity function.

To begin with, our analysis will look at the zero crossings of two second derivative operators,

the Laplacian, V~f, and the second directional derivative, 21t. (For a good introduction to these

operators and their use in edge detection, see Rosenfeld and Kak [34] or Ballard and Brown [1].)

Zero crossings of the Laplacian is the scheme advocated by Marr and Hildreth [29]. The second

directional derivative, defined as the second derivative of f (z, y) taken in the direction of the gradient,

characterizes edge detectors such as Canny [7] and Haralick [16]. Nonmaximum suppression in Canny

eliminates some zero crossings of 8, as we will discuss later with phantom edges.

To analyze the properties of zero crossings near junctions, we need a model for junctions. As a

generalization of the step edge model for edges, we chose to model junctions as the intersection of

three or more surfaces of constant intensity. Even though intensity surfaces in real images are not

constant (due to such factors as noise, shading, and specular highlights), approximating the intensity

surface as constant should be reasonable since we are interested in its behavior near a point. We

will use this model in two ways. First, following Poggio and Torre [37], we can qualitatively analyze

zero crossings near a junction by using transversality theory. Similarly, we can use simple reasoning

about the gradient as a vector field to explore its properties.

The second use of our model is quantitative: we find analytic equations for the gradient Vf, V 2 f,

and -4, and numerically estimate these equations to run experiments on junctions. The analytic

model we use is a general n-ary junction, the intersection of n regions with intensities ro through

r,n-. Shown in figure 2(a) for n = 3, our model n-ary junction has n incident edges e0 through

e,-1, where ei bounds the regions ri- 1 and ri and is at an angle 0i with respect to the positive X

axis. Using this model we can analyze any junction composed of straight edges (see figure 2(b) for

examples). We shall focus most of our attention on trihedral junctions (n = 3), since they are the

most common in imagery and are the easiest to analyze. This model is similar to the corner and

trihedral junction models developed respectively by Berzins [3] and De Micheli et al. [31].

The smoothed image intensity function, f(z, y), is obtained analytically by convolving the piece-

wise constant surface with a 2D Gaussian with width o,. Overall, the relevant parameters are o, and

ri and 0, for 0 < i < n. Appendix A gives the equations for the partial derivatives of f(z, y), from

which I•! 1, V 2 f, and q are easily derived. 2D arrays of values of these equations, which require

'The zeros of a second derivative operator can also correspond to a local minimum in a first derivative operator.

We will discuss this later when we talk about phantom edges.

3



e2  y Example Junction Types

0_ _ T Y ArrowI~o" K
eo X K

(a) (b)

Figure 2: (a) Our model n-ary junction is the intersection of n regions of constant intensity (shown

here for n = 3). (b) Some examples of junctions composed of straight edges, the type of junction we

can model.

numerical integration, were computed using the Connection Machine.

Now that we have defined our model of a junction, let us consider why gradient-based edge

det ýctors disconnect edges at junctions. The first cause we explore is that the edge operators V2 f

and 2q, intrinsically pair zero crossings in twos.

2.1 The Pairing of Edges at Junctions

Poggio and Torte [37] have done a detailed analysis of the geometric properties of zero crossings.

Using ideas from transversality theory and Morse functions, they showed that zero crossings always

form closed contours or contours that terminate at the image boundary. This makes intuitive sense

if you think of zero crossings as the boundary between positive and negative regions of V2f. Thus,

the edges incident to a junction will pair off in groups of two: two edges will be paired if they both

bound the same positive-to-negative transition in V2f (see figure 3).

The only configuration where more than two zero crossings can meet at a junction is when the

value of V2f or Slat a saddle point is zero (see figure 4(a)). As Poggio and Torte point out,

this hyperbolic point is structurally unstable; changing the parameters of our junction will cause the

edges to break off in pairs as shown in figures 4(b) or 4(c). Since the configuration of 4(a) is unstable,

we would not expect to see edges meeting this way often; the configurations of 4(b) and 4(c) are

more commonplace. Interestingly enough, perturbing the junction parameters to force the junction

edges to pair corresponds to moving the saddle point above (figure 4(c)) or below (figure 4(b)) the

z = 0 plane. This suggests that one can try to find junctions by looking at level crossings of V2 f

or f instead of zero crossings. The level crossing that one needs to examine is the critical value

4
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Figure 3: A junction and its zero crossings. The arrows show the gradient direction and the (+)
and (-) signs show the sign of V2f. Edges are paired if they border the same positive-to-negative

transition in V2f.

(a) (b) (c)

Figure 4: Hyperbolic points are structurally unstable: perturbing the junction that gave rise to (a)

can cause the zero crossings to break apart as in (b) or (c).
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Figure 5: A double step in intensity can create phantom edges, which appear in the middle intensity

region (figure adapted from Clark [10]).

of the junction's saddle point. We do not explore this potential technique further, as our junction

detection scheme is based on the gradient magnitude.

Given that edges are grouped in pairs of two at junctions, what happens at junctions with an odd

number of edges, such as our model trihedral junction? Additional edges, called phantom edges by

Clark [10], will appear to force the total number of edges at a junction to be even. Phantom edges,

roughly speaking, are zero crossings in the second derivative associated with local minima, rather

than local maxima, in the first derivative. Clark introduces phantom edges as a result of a double

step in intensity. Shown in figure 5, the double step contains two step edges that are close to one

another relative to the width of the smoothing filter. The second derivative has two zero crossings

at the two steps, but an additional "phantom" zero crossing appears in the region of intermediate

intensity.

A similar analysis can be applied to junctions to predict the occurrence of phantom edges. A

junction analogous to the 1D double step, shown in figure 6(a), consists of regions of low, medium,

and high intensities. A phantom edge will appear in the region of middle intensity, leading to the

zero crossings shown in figure 6(b). Simple reasoning with the edge gradients demonstrates why the

phantom edge appears in the middle intensity region. Figure 6(b) shows gradient vectors and the

sign of V associated with each edge. A single edge creates a gradient pointing from the "lower"

intensity region r- to the "greater" intensity region r+. The second derivative is positive in r-, zero

at the edge, and negative in r+. The second derivative in the medium intensity region, r2, is thus

bounded by a positive area at one edge and a negative area at the other. Somewhere in the medium

intensity region there must be a zero crossing. Thus, in general, a phantom edge will occur in any

region that is bounded by regions of greater and lesser intensity.

Now that we know how phantom edges are created at junctions, it is easy to see why phantom

edges will force the number of incident zero crossings to be even. Imagine making a single circular

pass around a junction, starting and finishing at the same point. Since the sign of the second

derivative must be the same at the starting/ending point, obviously an even number of + -- - and

6
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Figure 6: Because of the geometry of gradient vectors, the trihedral junction in (a) must have a

phantom edge in r2, the medium intensity region.

- - + transitions occurred while traveling around the junction. All real zero crossings are included

among these transitions; phantom zero crossings make up the difference to force the total number

to be even.

Phantom edges are important because they tell us in part how edges are disconnected at junctions.

That is, an authentic edge paired with a phantom edge will be separated from other junction edges.

This is because edge detectors usually employ methods for eliminating phantom edges. Nonmaximum

suppression in Canny, for instance, will weed out phantom edges because it explicitly looks for local
maxima in the first derivative. Zero crossings of V2f, as first proposed by Marr and Hildreth, do

detect phantom edges, but Clark [10] proposed an authentication measure to distinguish authentic

and phantom edges. The authentication measure, basically the third directional derivative of f(x, y),

measures the concavity of the first derivative. Local maxima, corresponding to authentic edges, have

a negative concavity and thus a negative authentication measure. Phantom edges, on the other hand,

have a positive authentication measure. Both Canny edges and authenticated zero crossings of V 2f

are thus similar in character - they only differ by the second differential operator used. Figure 7

shows authenticated zero crossings of where the authentication measure is negative in the dark

region (authentic edges) and positive in the light region (phantom edges). The edge disconnected

from the junction in these cases is the one paired with the phantom edge.

In a trihedral junction there is always one phantom edge to force the total number of edges to

be four. As described earlier, the four edges break into two pairs, and the authentic edge paired
with the phantom edge is disconnected from the junction. This naturally raises the issue of which

edge the phantom edge pairs with. Referring back to .3gure 6, we know the phantom edge lies in

region r2, the medium intensity region. For simple geometrical reasons, the phantom edge must be

paired with edges eo or e2 - the only other legal configuration is that all edges meet in an unstable

hyperbolic point. This immediately rules out the possibility that the phantom edge can be paired
with edge el, the strongest 2 edge in the junction. The phantom edge must be paired with one of the

'We are measuring strength by gradient magnitude, which is proportional to the intensity difference at the edge.
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Figure 7: Zero crossings of for example T and Y junctions. The zero crossings that fall in the

dark regions are authentic, and the zero crossings that fall in the light regions are phantom.

two weaker edges.

Empirically, we have found that the weakest edge at a trihedral junction is paired with the

phantom edge and thus disconnected. A qualitative account of why this happens can be presented
for the second directional derivative operator, 02f/On2 , since a good "procedural description" of the

operator exists. To obtain this operational description, we first note that the first derivative in the

gradient direction is precisely the gradient magnitude:

Of Vf
On = Vf I

n IVfI= f2+ f

Authenticated zero crossings of the second directional derivative are thus the local maxima of the

gradient magnitude taken in the gradient direction. The skewing effect of the stronger edge gradients

on the weaker edge's gradient direction, as we will see, causes the weakest edge to be disconnected.

We demonstrate by way of an example.

Consider the gradient magnitude and direction of the junction shown in figure 8(a), where we

have deliberately made edge e0 weak. Each edge contributes a "ridge" to the gradient magnitude

(figure 8(b)), with the .dge height proportional to the intensity difference at the edge. To describe

the gradient direction, we must look at the gradient as a vector field. Each edge contributes to the

gradient a vector perpendicular to ' tangent. Because of smoothing, though, these edge gradients

interact at the junction, and, naturally, the stronger edges swamp out the weaker ones. As a result,

the gradient direction at a junction is perpendicular to the stronger edges. As shown in figure 8(c),

edges el and e2 dominate the gradient direction at the junction. The gradient direction along edge

e0 is skewed by the stronger gradients. This skewing effect disconnects the edge e0 from the junction,

because, at point P in figure 8(d), 02 /8n2 will differentiate up the gradient ridges of edges el and

e2 in direction va instead of perpendicular to edge e0 's gradient ridge, direction Vb.

It is important to note the effect of changing the width of the Gaussian filter on zero crossings

8
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Figure 8: The junction shown in (a) produces the gradient magnitude (b) and a gradient vector field

(c). The strong gradient along edges el and e2 swamp out the weak gradient along edge e0 near the

junction, which, in part (d), causes 44n to differentiate along v,, instead of the edge perpendicular
, ton9



(a) (b) (c)

Figure 9: The effects of increasing the width of the smoothing Gaussian filter: zero crossings contract

from the junction center as o increases from 1 in (a) to 2 in (b) and 3 in (c). The darkened regions

contain real edges - there is one phantom edge extending upward.

at junctions. From research on edge detection, there is a well-known trade-off between using a

large a to combat noise and a small o to better localize edges; i.e. increasing o eliminates noise at

the cost of moving edges from their true locations. A similar breakdown in localization happens

at junctions. As ar is increased, zero crossings not only wander from their true locations, but the

gaps between edge pairs increase. As shown in figure 9, increasing 0 from 1 to 3 causes the zero
crossings to contract away from the junction center, increasing the spacing between them. Thus,

junction detection becomes more problematic as a is increased. For junction edges paired with

phantom edges, the edge's endpoint will move away from the junction center as a increases. One

way of looking at the effect of raising a is to think of smearing gradient ridges together. Since

differentiation and convolution commute, we can think of finding zero crossings as first computing

the gradient or Laplacian and then smoothing the result. Increasing a just increases the effects

of inter-edge interference, such as gradient skew discussed previously. Bergholm (2] has explored a

technique called edge focusing to try to reap the benefits of both a high and low a. High a edges

are tracked as a is slowly decreased, bettering edge localization and reconstructing junctions.

So far our analysis has used a continuous model for junctions and differential operators. We are

ultimately interested in discrete images - what qualifications must we make when speaking about

images? While much of this depends on the properties of the image and the discrete differentiator

chosen to implement V2 and 0 2/0n 2, some things may be said in general. Since edge points are

spatially discretized, a gap at a junction in a real edge map might not show up if it falls between

samples. The distance between the endpoint of the disconnected edge and the other junction edges

needs to be on the order of one pixel before it appears in discrete edge maps. Thus, discretization

actually assists in detecting junctions - some junctions that are disconnected in continuous space

will be connected in discrete edge maps. But, as we will see in the next section, discretization can

cause problems, too.

10



local max

local min

gradient ridges

ei-, ei el.1 ei

(a) (b)

Figure 10: The gradient vector fields from ei-i and ei in (a) oppose one another, leading to a saddle
point in the gradient magnitude near their intersection, (b).

To review, we have seen that the natural pairing of zero crossings at junctions causes gradient-
based edge detectors to miss junctions. There is another factor that contributes to edge fragmenta-

tion at junctions, a factor that we call vanishing gradients.

2.2 Vanishing Gradients

The gradient vector fields of two edges can interfere destructively with one another at a junction,
contributing to edge fragmentation. This happens whenever the gradient vector fields from two edges

point in opposite directions. For instance, in a junction where two edges meet at an acute angle, the
gradient vectors can be made to oppose one another (see figure 10(a)). Because of smoothing, the
gradient vectors destructively interfere, causing the gradient magnitude to actually decrease where
the two edges meet. This creates a saddle point in the gradient magnitude at the junction, as shown

in figures 11(b) and (c) for the junction of figure 11(a). At the saddle, the local maximum is in a
direction that roughly bisects the acute angle and the local minimum "bridges" the two gradient

ridges belonging to the two edges (see figure 10(b)). How pronounced the saddle point is, or how
much the gradient magnitude dips near the junction depends on how acute the angle is. The smaller

the angle, the more opposed the gradient vectors are, so the gradient dips more.

A second type of edge geometry where gradients combine destructively is pictured in figure 12(a).
This case is not guaranteed to generate a saddle point; all that can be said for sure is that the de-
structive interference tends to decrease the gradient magnitude at the junction center. A particularly

extreme example of this kind of gradient interaction is shown in figure 12(b), where e0 opposes e2

and el opposes e3. One can show analytically that the gradient at the center is zero - the opposing
gradient vectors from the four edges completely annihilate one another. The gradient magnitude,
shown in 12(c) has four saddle points, one between each of the edge pairs e0 -el, ei-e 2, e2-e3, and

e3-e0. As in the acute angle case, the minimum direction in each saddle bridges the gradient ridges

between two edges. In general, when vanishing gradients form a saddle point between the gradient

11
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Figure 11: The destructive interference between gradients at edges e0 and e2 in (a) creates a saddle
point in the gradient magnitude near their intersection. The saddle point is clearly visible in the

mesh plot of the gradient magnitude (b) and the contour plot (c).
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Figure 12: The junction edges in (a) have opposing gradients, but there may not necessarily be a

saddle point in Vf 1. The junction in (b), an extreme example of (a), produces four saddles in JVf I
shown in (c).
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Figure 13: Decreasing the angle 0 in (a) increases the effect of vanishing gradients between el and

e2. Vanishing gradients eventually so weakens edge el that it is paired with the phantom edge (part

(c)), even though it is stronger than eo in (a). Part (b) shows an intermediate case where all edges

meet in a hyperbolic point.

ridges of two edges, the minimum direction will link the two edges.

Vanishing gradients affects edge fragmentation in two ways, one affecting the way zero crossings

pair, and the other deals with the practical issues of noise and quantization. Recall that for a trihedral

junction, the phantom edge pairs with one of the two weaker edges. Empirically, we found that the

weakest edge is paired with the phantom edge, but vanishing gradients can change this. That is,

vanishing gradients can "weaken" the second strongest edge to such an extent that the phantom edge

pairs with it instead. In figure 13, we demonstrate how increasing the effect of vanishing gradients

changes the edge the phantom edge pairs with. When 0 = 900 (figure 13(a)), no gradients oppose

one another, so the weakest edge is paired. When 0 reaches 200 (figure 13(c)), though, vanishing

gradients have weakened edge el to the point that it is now paired with the phantom edge. It is

interesting to note that in between these two extremes, there is an angle in which all four edges meet

iin a hyperbolic point (figure 13(b)).

Besides changing which edge pairs with the phantom edge, vanishing gradients can cause addi-

tional edge fragmentation at junctions, fragmentation independent of edge pairing. These additional

sources of fragmentation deal with the practical issues of real images, as opposed to the ideal con-

13



(a) (b)

Figure 14: For the junction in figures (a), vanishing gradients increase = s sensitivity to noise, as

seen in the Canny edges to the immediate right - notice the gap introduced at the junction when

the noise is added. Vanishing gradients do not affect the junction on the right (b), so adding noise

does not add any new gaps in the edge map.

tinuous analysis that led to edge pairing. The first issue we explore is noise: vanishing gradients

make edge detection at junctions more susceptible to noise. The strength of an edge, or its "signal",

is usually chosen to be the gradient magnitude at the discontinuity. As we have seen, the gradient

magnitude dips where two edges with interfering gradients meet. Thus, the edge "signal" decreases

at the intersection of the two edges. If we assume that the noise variance is constant across the

image, then the signal to noise ratio decreases at the edge intersection. Thus, as shown in figure 14,

noise may disconnect the two edges while the edges themselves remain intact.

Noise and quantization also affect the gradient direction, which has an impact on our i92/On 2

operator. The skewing effect of noise and quantization is particularly harmful at the saddle point in

gradient magnitude caused by vanishing gradients. At the saddle, the gradient direction points down

the valley3 between the two gradient ridges belonging to the edges involved. The tolerable range of

angles for which the saddle point is a local maximum is small compared with normal edge points

along a gradient ridge. This is because the gradient valley can be very narrow, and also because

the saddle is a local minimum perpendicular to the gradient. Thus, a small change in the gradient

direction can cause the gradient to point up one of the gradient ridges rather than down the valley.

Thus, noise or quantization error can disconnect edges found by 02 /1n 2 by changing the gradient

direction from what it would be in the continuous ideal case. It is interesting to note that this is

why sharp corners are disconnected in the Canny edge detector.

31t could also point 180' in the opposite direction, but the analysis for this case is similar.

14



In review, we have explored two basic reasons why edges are fragmented at junctions. The first.

more theoretical in nature, is that zero crossings intrinsically pair off in twos. Secondly, vanishing

gradients at junctions makes edge detection more problematic given the practical issues of noise and

quantization. Now that we know the causes of edge fragmentation at junctions, we ask how one

might be able to group disconnected edges given information about the gradient magnitude.

15
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Figure 15: One may group the edge ed to the junction by following the minimum direction from the

saddle point between ed and en.

3 Using the Gradient to Group Edges at Junctions

The previous section discussed the reasons why edges from gradient-based edge detectors are

broken apart at junctions. If a real edge does not pair off with another real edge, then it will be

disconnected from the junction, separated by a small gap. As a result, edge maps from gradient-

based edge detectors are filled with nearly complete junctions: just filling in the small gap between

the endpoint of the disconnected edge and its junction will enable a system to detect junctions. This

section explores methods for using the gradient to fill these gaps and introduces the bow tie map as a

tool for implementing those methods. The techniques developed here form the basis of our junction

detector described in the next section.

3.1 Properties of the Gradient at Disconnected Endpoints

One can use the analysis of the previous section to find local properties of the gradient that

enable the grouping of a disconnected edge with its junction. When vanishing gradients break off an

edge, ed, there will be a saddle point in the gradient magnitude near ed's endpoint. The gradient

vector field generated by ed combines destructively with that of another edge, en, resulting in a

saddle point where the two edges meet (see figures 10 and 11). As shown in figure 15, the minimum

of the saddle point is in a direction that links the endpoint of ed to en and the junction center.

Thus, one way to fill the gap between ed and the junction is to follow the minimum direction away

from ed until en is found. This rule is related to a similar idea by Korn [21] for filling in gaps at

junctions by looking for local minima in the gradient magnitude.

Another method for grouping edges must be found for junctions with no saddle points in !Vf1.
Such cases will arise when no edge gradient opposes any other or the opposition is too small to be

detected. The disconnected edge ed will be one of the weaker edges in the junction; stronger edge

gradients nearby have skewed its gradient direction, as discussed in the last section. The edge ed
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Figure 16: (a) We use linear interpolation between A and B to calculate the value of the gradient
magnitude in direction a: the interpolated value = 3B + (1 -,3)A. For the max bow tie in (b), !V f!

at P is bigger than the indicated interpolated values.

will be paired with a phantom edge; the endpoint of ed is the location where ed turns from being

authentic to phantom. The gradient magnitude ridge for ed will not dip in value before it combines
with the stronger gradient ridges of the nearby stronger edges. Thus, the gradient magnitude ridge

serves as a link between the endpoint of ed and the junction. We can fill the gap by following

ed's gradient ridge. Refer back to figure 8, looking at 8(b) for how e0's gradient ridge continues
uninterrupted to the other gradient ridges.

3.2 The Bow Tie Map: A Tool for Representing the Gradient

From our discussion about filling in gaps in edge maps at junctions, we would like a representation

for IVf I that would expose gradient ridges and saddle points. We introduce the bow tie map as a
way of doing this. The bow tie map captures the local geometry of IVf I by comparing the gradient

magnitude of a point P to each of its eight connected neighbors. For instance, we could easily

measure whether P is a local maximum along the y-axis in IVfI by comparing the value of IVfI
at P to those values of IVf I at P's vertical neighbors, A and C in figure 16(a). More generally,

P is a local maximum in direction a if IVfI at P is bigger than IVf I sampled in directions a and

-a 4 . We can find the gradient magnitude in any direction a by linearly interpolating between P's

eight connected neighbors. For instance, for directions a in the range 450 to 900 from the X-axis, we

interpolate IVf I between points A and B (see figure 16(a)).

The bow tie map records at each point two ranges of directions: one range of directions for which

the point is a local maximum in JVf 1, and a second range for which the point is a local minimum.

The former range is called a max bow tie and the latter a mrin bow tie. These ranges can be easily

computed in closed form because of the fact that we are using linear interpolation. We call the
direction ranges bow ties because we draw them by filling in directions in two wedges that look like

a bow tie (see figure 16(b)).
4The direction -a is the opposite direction of a.
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Figure 17: Bow tie maps at a junction affected by gradient skew (a) and by vanishing gradients (b).

In (a), gap points arise in the edge map where the gradient direction moves outside the max bow

tie. In (b), the saddle point can be used to help fill the gap in the edge map.

One of the better qualities of this representation in helping us find junctions is that it is inde-

pendent of the gradient direction, and thus not susceptible to gradient skew. This is evident in the

bow tie map of figure 17(a), a good example of a junction affected by gradient skew. In the figure,

edge points detected by the Canny edge detector are shown with unfilled circles (some points that

look like they should be edge points have been thinned away for curve tracking purposes). Max bow

ties are dark; min bow ties, light. The gradient is shown as a vector field - the vector at each point

shows the gradient direction and magnitude. This figure shows how the gradient direction along the

disconnected edge, ed, moves out of the max bow tie. The gap points where this has happened are

not picked up as edge points by the Canny edge detector. The edge ed's gradient ridge is still intact

in the gap region, as shown by the max bow ties there.

This leads us to the first use of the bow tie map: detecting gradient ridges. A gradient ridge will

be a sequence of max bow ties with similar orientation. In the gradient skew case5 , a gradient ridge

will be present linking the endpoint of ed to the other junction edges. From ed's endpoint, we try

to extend ed by following a path of max bow ties with fairly constant orientation. This orientation

tends to be perpendicular to the extension. Since a weaker edge is being reconnected to stronger

edges, the gradient magnitude should increase along the path of max bow ties - we are ascending the

gradient ridges of the stronger edges. Furthermore, since the weaker gradient ridge is disappearing

into the stronger ones, the max bow ties tend to get thinner as the junction is neared (this happens

in figure 17(.-)).

For disconnected edges caused by vanishing gradients, we may use the saddle point in VJI to

help reconnect the edge. A saddle point will appear in the bow tie map as a point with both a min

SAssuming no or negligible vanishing gradients.
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Figure 18: (a) The layers of min and max bow ties surrounding an edge; (b) The max bow tie at C

depends on the linear interpolation between A and B; (c) The interpolated points between A and B

fall below the Gaussian in its concave down section.

and a max bow tie. As already discussed, the minimum direction of this saddle point will point

towards the other junction edges. From ed's endpoint, we simply search for the nearby saddle point

and extend the edge along the minimum direction. Figure 17(b) shows the bow tie map of a junction

affected by vanishing gradients. Notice that the endpoint of the disconnected edge is a saddle point.

Also, noise, quantization, and the weakening effect of vanishing gradients have broken the path of

max bow ties from the disconnected edge to the other junction edges. Thus, it is necessary to have

extension rules that look at both gradient ridges and saddle points.

Looking at the gradient ridges along the edges in figures 17(a) and 17(b), one notices very thin

max and mrin bow ties oriented parallel to the edges. Although not immediately evident from the

figures, a more thorough examination of these thin bow ties near gradient ridges reveals that there

are two "layers", a max layer near the edge, right next to the edge points, and a min layer beyond

that (see figure 18(a)). There should only be a maximum condition across the ridge, not a max or

mrin condition along the ridge. So, what is going on? We believe that the explanation has to do

with the fact that we are using a linear interpolation of the gradient after a Gaussian filter has been

applied. Consider the max bow tie at point C in figure 18(b). We are interested in the computation

of the bow tie in the direction parallel to the edge, which involves an interpolation between points

A and B. We claim that the max bow tie range is made larger by the linear interpolation process.

We can view the gradient magnitudes at points A, B, and C as being sampled on a Gaussian at a

point determined by how far they are from the edge, as shown in figure 18(c). When "close" to the

edge, the Gaussian is concave down, so the interpolation will be less than the actual value along

the Gaussian. Thus, the interpolated points are artificially low, so point C is effectively increased

in value. This tends to create a max bow tie oriented parallel to the edge. A symmetric argument

occurs for points in the min bow tie layer. Only this time, we are in the concave up section of the

Gaussian, so interpolated points are artificially high. This will create min bow ties. Overall, because

we combine a linear interpolation with a Gaussian filter, we get an artifact of max and min bow
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ties oriented parallel to the edges. Empirically, these bow ties are very thin and the gradient points

perpendicular to the bow tie, so a system might be able to distinguish them from "real" bow ties.

In summary, we have introduced the bow tie map as a tool for finding gradient ridges and saddle

points in IVfI. Two techniques for extending disconnected edges have been discussed: following

gradient ridges and following the minimum direction of saddle points. We have built a junction

detector based on these two techniques; we present it in the next section.
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4 A Junction Detection Algorithm

We have developed an algorithm for detecting junctions that works by filling in the gaps at

junctions in edge maps. A postprocessing step to edge detection, the algorithm extends disconnected

edges, using the techniques of the last section to "grow" edges from their endpoints. In keeping with

our analysis of gradient-based edge detection schemes, we chose to use the Canny edge detector [7]

as the preliminary edge detection step. We favored Canny edges over other gradient-based schemes

because of its good localization of edges and immunity to noise. After finding Canny edges and

identifying edge endpoints, the junction detection algorithm works in two phases. First, an edge

grouping phase, using gradient information, determines which edges to group together to form a

junction. Then a second phase refines this grouping by using geometrical information to actually

extend the disconnected edge. After filling in the gaps at junctions, we are left with a "network" of

edges, an edge map with both edges and junctions.

4.1 Edge Grouping

In the edge grouping phase, disconnected edges are grouped with their fellow junction edges

using the gradient information in the bow tie map. The endpoints of disconnected edges, extended

using the ridge and saddle minimum rules, are grouped with the edges intersecting the extension.

We now examine how the ridge and saddle minimum following rules are implemented.

As explained in the previous two sections, we can use saddle points in the gradient magnitude to

group disconnected junction edges via the saddle's minimum direction. We basically want to extend

the disconnected edge in a direction aligned with a nearby saddle point's minimum direction. First,

from the disconnected edge's endpoint P, we search P's neighbors for a saddle point, a point with

both a min and max bow tie. In the search for saddle points, we not only include the usual pixels

at integral coordinates, but also at locations offset by half a pixel; i.e. pixel location (12.5, 15.5).

Gradient values at these "half pixel" coordinates are estimated by bilinear interpolation. Next, the

saddle's minimum direction is determined by the average direction of the min bow tie. Finally, we

simply linearly extend the disconnected edge from the saddle point. Along the path from the saddle

point to the neighboring junction edges we expect to be climbing a gradient ridge; i.e. the gradient

magnitude should be increasing since we are traveling in the minimum direction. Thus, we measure

IVIfI at the saddle, IV! fcritical, and we make sure that each point along the linear extension has a

gradient magnitude at least as large as this value. (To allow for noise, we test for only 90 percent of

Vflcritica.) If IVfI at some point along the extension dips below IVf critical, then the extension

is stopped and the disconnected edge left ungrouped. The extension stops successfully when it

intersects other edges.

The second method for using the bow tie map to group disconnected edges is to follow gradient

ridges from the endpoint of the disconnected edge. We use this rule when there is no saddle point in

IV!fI nearby, which indicates that vanishing gradients have not weakened or destroyed the gradient

ridge linking the endpoint to the other junction edges. The goal here is to follow a path of similarly
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Figure 19: Grouping phase results: real grey level images of construction paper cutouts (left), Canny

edges (middle) and edge extensions using gradient information (right).

oriented max bow ties from the endpoint to the other junction edges. We "grow" the endpoint along

the gradient ridge by recursively applying the following technique. Rank the endpoint's "forward

neighbors" using the scoring function

IVPl
score = Imean angle(max bow tieendpoint) - mean angle(max bow tieforward neighbor)l

and continue the edge to the highest ranking point. This tends to favor those endpoint neighbors with

big gradients and max bow ties similarly oriented to that of the endpoint. We define the "forward

neighbors" of an endpoint P as the three eight connected neighbors that lie most closely along the

edge's extension. Additionally, as with the saddle point case, we expect the extension to be rising

up a gradient ridge. To enforce this constraint, we measure IVfI at the endpoint, IVfIendpoint, and

require that all extension points to have IVf I greater than 90 percent of IVf Iendpoint"

We show some edge grouping results in figure 19. The original grey levels are on the left, Canny

edges are in the middle, and edges with gaps filled in at junctions are on the right. One of the

difficulties the edge grouping system encounters, though not evident in figure 19, is with short
"noise edges" that exist in the Canny edge map when gradient thresholds are not properly chosen.

When the noise edges are close to one of the real edges, they often attach themselves to the stronger

edge, creating a false positive junction.

What can be done to help eliminate these false positive junctions? We have tried to create

an "edge saliency" measure to distinguish noise edges from real edges. Our edge saliency measure

ranks edges by their average gradient, length, and smoothness. Since the measure favors long and

smooth edges with high contrast, short noise edges will naturally score poorly and can be filtered

out. Ideally only the real edges will remain to be extended. We use a threshold on edge saliency
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in the final results (see figures 21 and 22) to eliminate some noise edges from consideration. As we

have implemented it here, edge saliency is a generalization of the technique for using a threshold on

[Vfj to distinguish edge points from noise. More generally, edge saliency can be used as a tool for

filling in gaps and selecting important edges (see Sha'ashua and Ullnan [36]).

As a technique for eliminating false positives, edge saliency is not entirely satisfactory for two

reasons. First, the edge saliency measure does not necessarily completely separate the real and
"noise" edges; i.e. the lowest scoring real edges may not be more salient then the higLest scoring

noise edge. Second, there seems to be no principled way to choose a saliency threshold. What we

have done in our test cases was to deliberately select a low, conservative threshold so as to avoid

ignoring real edges but still eliminating many noise edges.

Another way to eliminate false positive junctions is to require all edges to be either closed or

joined with other edges at both endpoints after junction detection. This eliminates the false positive

junctions where a noise edge is dangling from a real edge and has one free endpoint. The resulting

edge junction graph would consist of closed cycles, a natural condition for defining image "regions".

This technique is applicable when the real edges do form a network of closed cycles - a missing edge

could make this heuristic eliminate some true junctions. We study the usefulness of this technique

in the discussion section, but did not use it in the final results of figures 21 and 22.

The results of figure 19 demonstrate the motivation for having a geometry-driven stage for

refining the extensions. A few of the edge extensions have tangent discontinuities with the original

edge or do not intersect the junction center properly. The edge grouping may be correct, but the

extension and the resulting junction center are not well localized. This problem seems to be caused

by the interaction of strong and weak gradients brought on by smoothing. If a weak edge's gradient

is absorbed into a stronger edge's ridge far from the junction (> 3 pixels), then the ensuing gap

will be large. When the growth process from the disconnected edge starts climbing the stronger

edge's gradient ridge (and the influence of the weaker edge is negligible), then the growth process

naturally takes the fastest path up the ridge, which is perpendicular to the stronger edge. This

path may not be a nice continuation of the disconnected edge. This is why we emphasize that the

techniques presented so far are grouping techniques - we will use geometrical information to fill the

gaps between grouped edges.

4.2 Gap Filling

Unlike the edge grouping phase, the gap filling phase does not use gradient information. As

such, it is independent of the analysis of sections 2 and 3 and is not at the heart of the junction

detector. This is a refinement step, using geometrical information to improve the gap filling of

the edge grouping phase. The goal of this refinement step is to find a smooth continuation of the

disconnected edge to the edge it was grouped with. There are two hypotheses that we axe testing:

either the disconnected edge ed continues well with one of the other junction edges (figure 20(a)),

or it meets the other curve with a tangent discontinuity (figure 20(c)). Key to this analysis is the
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Figure 20: In the gap filling phase, we assume that the disconnected edge either continues well with

one of the other edges (a), or meets them in a discontinuity, (c). Figures (b) and (d) show the cubics

we fit to edge portions to decide between the two cases.

fitting of cubic polynomials to portions of junction edges. We will use the second derivative (the

second derivative is used as a measure of curvature) of these cubics to evaluate the extensions of ed

under different hypotheses.

First we test the hypothesis that ed continues well with one of the other junction ereges. Assume

that ed was grouped with the pair of edges el and e2 , as shown in figure 20(a). Here we are

assuming that el and e2 were not disconnected in the original edge map. The edge ed can continue

well with either el or e2. Both possibilities are tested by fitting two cubic polynomials cl and c2

(see appendix B for the details of cubic fitting) to the two edge pairs ed-el and ed-e2 respectively

(see figure 20(b)). We judge the continuity of two edges T)y a second derivative measure of the fitted

cubics, taken to be the second derivative sampled at several points along the cubic. If the second

derivative measure of either cl or c2 is below a threshold, then the implied edge grouping is formed

and the gap is filled using the cubic. If both cl and c 2 have a measure below the threshold, the cubic

with the lowest measure wins.

If ed does not continue well with one of the edges at the junction, then it must meet the other

junction edges with a discontinuity. In this case, we need to determine which point along edge el (see

figure 20(d)) ed extends to. We simply test many points along el centered around the point P, the

intersection of the grouping pass extension with el. We choose the point along el that generates the

fitted cubic with the smallest second derivative measure. Again, the gap is filled with the "winning"

cubic.

Now that the description of the junction detector is complete, let us look at some results. Fig-

ures 21 and 22 show image "triplets" consisting of the original grey level image, Canny edges, and

Canny edges with junctions. Notice how the gaps are filled in at junctions. We used a = 1.0 for

the Gaussian smoothing step applied before Canny. The hysteresis parameters fed to Canny are:

low = 2 and hi-to-low = 2 or 3, where the units are in terms of the noise estimate. The noise estimate

is chosen to be the 30th percentile of the gradient magnitude histogram. We chose a threshold on

the edge saliency measure to prevent the extension of some of the "noise edges". We now close this
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Figure 22: More final junction results: grey level image Thanksgiving, Canny edges and edge

extensions using gradient information.

section with an evaluation of the junction detector.

4.3 Discussion

In this section we evaluate the junction detector in terms of its computational cost, ability to

detect true junctions, and its false positive rate. We will also discuss cases where the junction

detector is known to fail.

4.3.1 Timing of our Junction Detector

The amount of time taken by the grouping and cubic fitting stages grows linearly with the

number of endpoints in the edge map. As edges are extended from their endpoints, the bow tie

map is computed in a 3x3 neighborhood about the endpoint of the extension. Computing the bow

tie map itself is inexpensive since it involves up to 16 subtractions and 8 divisions per point. The

smoothed gradient values from which the bow tie map is constructed are already available from the

edge detection step. We show some timings for the images of figures 21 and 22 in table 1. The
gap filling stage, the most expensive step, is only a refinement step - one can get a first cut at the

junctions and their locations with only the grouping step. The timings were done on a SPARC IPC

and the system was written in Common Lisp.

Comparing the computational expense of our junction detector to that of junction preserving
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image saliency edge grouping cubic fitting

rings 1.6 1.5 2

d-occlude 1.4 2 3

two-guys 5 30 45

sung 6 33 47

Thanksgiving 12 48 76

Table 1: Timings of the junction detector, in seconds (SPARC IPC, Common Lisp implementation).

edge detectors and other junction detectors, our detector falls somewhere in the middle. It is

cheaper than iterative methods that evolve the image over time, such as the weak membrane model

or anisotropic diffusion (all the techniques referred to here will be discussed in the next section).

It is more expensive than the simple gradient-based junction finders of Korn [21] and Lacroix [22],

but more principled in the sense that we use an analysis of the gradient near junctions to build the

junction detector.

4.3.2 Detection and False Positive Rates

One characteristic of the junction detector is that it is fairly aggressive about extending discon-

nected edges. Empirically, the detector successfully extends "true" edges. Gaps at real junctions

are filled correctly most of the time. As previously noted, however, this aggressive extension strat-

egy creates problems with false positive junctions - "noise" edges that latch onto real edges. This

happens because the noise edges are interpreted as the "weaker edge" disconnected from a nearby

stronger (real) edge. In this section, we look at the junction detector's ability to detect true junc-

tions and reject false ones, both with and without the heuristics discussed before to eliminate false

positives.

In order to quantitatively evaluate the junction detector's detection and false positive rates,

we have tested it on synthetic trihedral junctions with additive Gaussian noise. The synthetic

junctions were constructed from three randomly chosen intensity surfaces between 0 and 255. The

boundaries between regions were straight lines with randomly chosen orientations. Intensities and

orientations were constrained so that the minimum difference between intensities was 20, and between

orientations, 20 degrees. See figure 23(a) for an example junction with additive Gaussian noise with

0"=9.

We examined the junction detection and false positive rates under varying amounts of noise. We

used both the edge saliency and edge networking heuristics to reduce false positives. The results

are presented in figures 23(b) and (c). Each point in the two plots represents 10,000 junction test

cases. To explain how we computed the detection and false positive rates for each a value, let us
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Figure 23: (a) Example synthetic junction, a of additive Gaussian noise is 9, (b) detection rate
versus noise a, (c) false positive rate versus noise a.

first define some terms. Let

N = number of junctions = 10,000

CD = number of true detections, Canny

BD = number of true detections, Bow tie detector

BF = number of false detections, Bow tie detector.

Now we define the detection rate as the ratio of true detections by the bow tie detector to the total

number of true junctions it could have found, which is the total number of junctions, N, minus the

number of true junctions found by Canny. That is, the detection rate is defined as

BD
detection rate = - D

N -CD"

The false positive rate is simply the fraction of false detections to total detections, or

BF
false positive rate = BF

BF + BD'

How applicable are these results to real images? It depends on how closely we have modeled junctions
in real images. On one hand, the noise level of a = 12 is higher than we expect for real images, so

the results for high or are perhaps a little too pessimistic. On the other hand, the step edge model

for junctions is simplistic. Some junctions may have edges that are, say, combinations of steps and
impulses. This factor makes the results appear better than those we would expect for real images.

To get an idea on how much the edge saliency and edge networking heuristics add to our ability
to reduce false positives, we ran some more experiments, this time keeping a constant but varying
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heuristics false positive rate detection rate

neither .1946 .9213

edge network .1161 .9370

edge saliency .0602 .9329

both .0295 .9384

Table 2: False positive and detection rates as we try different combinations of heuristics to reduce

false positives. We used a noise o, of 9.

the number of heuristics used. Both heuristics were tried in isolation and one experiment used

no heuristics at all. The results are shown in table 2, where the experiment using both heuristics

is repeated for comparison. Clearly, the edge saliency measure is of more value than the edge

networking heuristic and should make the false positive rate sufficiently low for most applications.

4.3.3 Known Failure Cases

In our approach to junction finding through extending endpoints, we have ignored the case where

junctions break apart by the pairing off of real edges. In the example junction back in figure 3, four

junction edges form two pairs - there is no endpoint from which to start a growth process. However,

junctions such as this one are special cases; recall from section 2 that intermediate valued junction

regions introduce phantom edges which pair off with real edges. Also, vanishing gradients can

disconnect two real edges that should, in the ideal continuous case, be connected. These factors

generate endpoints which give our algorithm a starting point.

To review, we have introduced a junction detector that works by extending the endpoints of
disconnected edges at junctions. The extensions are guided by gradient ridges and saddle points.

These extensions are refined by fitting cubics to portions of junction edges to find nice edge continu-

ations. Having explored one method of junction detection in detail, let us now review previous work

on junction detection by other researchers.
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5 Previous Approaches

Our discussion of previous approaches to junction detection will focus on two areas. The first of

these is edge detection techniques that do not inherently break apart junction edges. Secondly, we

will look at systems that find junctions by modifying an edge operator or doing postprocessing after

edge detection. Our system falls into this latter category.

5.1 Junction Preserving Edge Detectors

In the last couple decades of research in machine vision, a multitude of edge detectors have been

proposed, each detecting junctions with varying degrees of success. We have already discussed how

gradient-based detectors, such as the Laplacian of the Gaussian and the second directional derivative,

perform poorly at junctions. There have been, however, edge detectors that do detect junctions

well, and in this section we review three such approaches proposed recently, the weak membrane,

anisotropic diffusion, and morphological edge detection. These edge detection techniques perform

well at junctions because the structure of junctions is not destroyed by a uniform smoothing process,

as is the case for gradient-based detectors.

5.1.1 The Weak Membrane Model

In Blake and Zisserman's weak membrane model for edge detection [5], which is an approximation

to MRF models with line processes (see Geman and Geman [12], Marroquin et al. [30]), the intensity

surface of the image is reconstructed by modeling it as a weak membrane. In general, a weak

membrane can bend but it cannot crease, so at discontinuities, the membrane "breaks", or tears.

The surface is reconstructed by minimizing an energy functional of the following form

E=D+S+P.

D is the closeness of the reconstructed surface to the data, given by f(u - d)dA, where u is the

height of the reconstructed surface and d is the original data. S is a regularization term that

forces the reconstructed surface to be smooth; it is of the form A2 f Vu 2dA, basically favoring those

solutions that have small first derivatives. P is a penalty term that discourages the formation of

discontinuities, or tears, in the surface. Blake and Zisserman use a penalty function based on the

length of the tear, tending to form edge contours of minimal length.

After an iterative process that finds the reconstructed surface, edges, the tears in the surface,

are located simply by finding points where local differences in surface values fall above a particular

threshold. In general, this process works well at junctions. One reason why it works so well is that

the original data are never blurred by smoothing with a Gaussian. The reconstruction does have a

smoothing effect, but the original data values are never forgotten and a high discrepancy between

data and surface shows up as a high energy contribution in the D term. Another reason for its

performance at junctions is that an edge hysteresis stage is "built into" the energy functional. This
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hysteresis arises from an interaction between the penalty term, P, and the other terms, D and S, in

a gap area between two discontinuities. In terms of energy, it costs less to close the gap and incur

the extra penalty than to keep the gap and have an area of high data to surface disparity and high

Vu. The result is that tears in the membrane tend to propagate, continuing broken edges. Thus.

we would not expect to see edges disconnected from junctions as often as we see in gradient-based

detectors.

The weak membrane model does, however, have an inherent difficulty with what is called a
"gradient limit". One parameter to the algorithm, the sensitivity parameter, measures the minimum

height of a step edge that it can detect; when a step edge has an intensity gradient many times this

sensitivity, many breaks will occur in the membrane. This results in a "fat" edge and decreases

the membrane's edge localization ability. Interestingly enough, our junction detector has a similar

localization problem introduced by smoothing gradient ridges into one another. Recall that this was

the motivation for the geometrically driven gap filling stage.

5.1.2 Anisotropic Diffusion

Perona and Malik [33] have recently used anisotropic diffusion to perform a multiple scale analysis

of an image, finding both edges and junctions. Using the initial image as a starting point, anisotropic

diffusion "evolves" the image over time by smoothing intensity surfaces within regions while avoiding

smoothing over edges. The later "times" compare to the coarser scales in more traditional scale-based

approaches. Unlike the case with scale-based approaches, however, the localization of edges at later

times in anisotropic diffusion does not deteriorate because smoothing between neighboring regions

is avoided. Recall that smoothing across regions is how Gaussian filtering destroys the structure of

junctions and smears gradients. Interregion smoothing is avoided by allowing the conductance to

vary spatially across the image; the conductance is chosen to be a monotonically decreasing function

of gradient magnitude. Thus, conductance is high and smoothing occurs where the gradient is small.

There is a gradient threshold below which smoothing occurs and above which edges are enhanced.

Junctions are preserved in the piecewise smooth image that evolves over time because interregion

smoothing that would otherwise distort junctions is avoided.

5.1.3 Morphological Edge Detection

In morphological edge detection, pixels in the image are treated as elements of sets. Special

operators are constructed by creating what is called a structuring ele'±ient, somewhat like the kernels

used in convolutional operators. Figure 24 shows a sample structuring element, Dod, that we will

use later in an edge detection example. The image is operated upon by combining these structuring

elements with the image in various ways. One such operation, dilation, is defined on grey level

images as
d(r,c) max f(r - i,c - j) + b(i,j),

(i, j) in domain of b
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Figure 24: The sample structuring element, D,od. The elements of the set are shown in dark circles.

Basically, D,., specifies the four connected neighbors.

where f(r,c) is the image in (row, column) coordinates and b is the structuring element. Another

operation, erosion, is defined similarly, but replaces the max operator with min and subtracts the

structuring element instead of adding it.

Edge operators can be built by looking at the difference between either dilation or erosion and

the original image; this difference is called the dilation or erosion residue. In an example taken from

Lee, Haralick, and Shapiro [24], the erosion residue is given by

G,(rc) = f(r,c) - e(r,c),

where e(r, c) is the erosion. If we use D,.d as the structuring element and we map it to zero, we can

make the following simplification.

G.(r,c) = f(r,c) - min(,,,)EDo.f(r + i,c + j)

"-= "z(iJ,)EN 4(,d)(f(r,c ) -- i))

where N 4 (r, c) gives the set of four connected neighbors of a point (r,c). This operator simply takes

the largest difference between a pixel and his four connected neighbors. Since points near edges

will have large difference between neighboring points, edge points are located by thresholding the

erosion residue. Lee, Haralick and Shapiro show how this operator behaves and recommend further

refinements that combine the erosion and dilation residues.

Noble [32] analyzes how morphological operators can be used for feature detection. In her

analysis, she shows how morphological operators take advantage of certain differential geometrical

characteristics of the intensity surface. The differ mtial geometry of the intensity surface near step

edges and junctions naturally lead themselves to being detected by an operator that computes the

difference between the dilation and erosion of the image. She shows some examples of how such an

operator performs well at junctions - there appear to be no disconnected edges.

One difficulty with morphological techniques is their sensitivity to noise. When no kind of

smoothing or blurring operation is built into the morphological operator, Lee, et al. report that the

operator is noise sensitive [24]. When blurring is added, the signal to noise ratio improves, but then

morphological techniques begin to look more and more like gradient-based edge detection techniques.

Both use smoothing and the differences between a center pixel with his neighbors.
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5.2 Previous Work on Junction Reconstruction

In the previous analysis of the gradient near junctions, we saw how the pairing of edges and van-

ishing gradients present problems for gradient-based edge detectors. Also presented were some simple
rules for reconstructing broken junctions from the output of the Canny edge detector. How have

other researchers dealt with this problem? In this section we look at modifications and extensions

to edge detectors that try to restore junctions.

5.2.1 Geometric Heuristics

The Binford-Horn line finder [171 uses geometric heuristics to find vertices (junctions) in an

edge map. First, edge points are located by correlating the image with ideal step, roof, and peak

kernels. As one would expect from our analysis of the gradient near junctions, edges are broken

up at junctions. Binford and Horn use geometric heuristics to clean up the edge image and find
vertices. After straight lines are fit to the detected edges, a few rules are applied involving extensions

of these linear fits. For clusters of nearby endpoints, a vertex is placed at the point of least squares

perpendicular distance to the linear extensions. Next, edges that have an endpoint close to another

line are completed, allowing for the detection of T and K vertices. Finally, unattached lines are
extended to nearby vertices if their extensions are short and pass nearby the vertex. These edge and

vertex finding techniques were successfully applied to creating a "clean" edge and vertex map for

blocks world images, suitable for 3D interpretation programs.

5.2.2 Scale Space Approaches

For edge detectors that smooth the image before extracting edges, there is a fundamental trade-

off between the ability to localize edges and the ability to filter out noise. As one increases a used

in the smoothing Gaussian, noise suppression improves but edge localization deteriorates, as the

smoothing actually changes the location of the edge in the smoothed image. The ability of the edge

detector to find junctions also enters this trade-off. In our previous analysis of the gradient near

junctions, we saw how the gap size in broken junctions increases as we increase a. Thus, when

trying to preserve junctions in the output of an edge detector, it would be nice to use the smallest

o, possible. However, this has the bad effect of increasing the noise response. In general, one would

like to have both the localization and junction preserving advantages of using low a and the noise

suppression advantages of high o.

One can gain the advantages of both good localization and good noise suppression by examining

the edge maps at several scales or resolutions, using many different a values. The idea of analyzing

the image at several different scales was first advocated by Rosenfeld and Thurston [351. Later,

Marr and Hildreth [29] observed that strong edges are those that are relatively stable across scales.

Witkin [411 generalized this by developing the scale-space representation of a ID signal, a plot of

the zero crossing location on one axis and scale on the other. He suggested using the coarser scales
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(high o,) to locate important edges and then to localize them by tracking how they move in the scale

space plot as o, is reduced.

Bergholm [2] has implemented an edge detector based on Witkin's idea of tracking edges from

coarse to fine resolutions, a technique he calls "edge focusing". He traces the edges using a "con-

tinuous" approach, meaning that the change in o, is carefully chosen so that edges are almost never

displaced by more than one pixel from one resolution to the next. This makes the edge matching

across different resolutions trivial. Since he uses the Canny edge detector to find edges at a partic-

ular scale, junctions are broken at coarse scales. However, as o gets smaller in finer resolutions, the

gaps in junctions get smaller, and some junctions are completely restored. Not all smoothing can

be eliminated, however. This is because the optics of the camera always introduces some blur, and

typically some small amount of smoothing is used even at the finest resolutions to control the noise.

Thus, edge focusing cannot restore all junctions in full, but it is a good point for other junction

restoration techniques to start from since it helps reduce gap size.

Giraudon and Deriche [14] have used scale space in a different way to build a junction detector

especially apt at localizing junctions. Their detector is based on how elliptic points in the image

intensity function move across scales near junctions. Elliptic points are found via local maxima in

the DET operator, defined as

DET = II)- I1

where I is the image intensity. They have found that a line drawn through the elliptic points found

at different scales intersects zero crossings of V2 f at the junction center. For trihedral junctions,

two elliptic poirts are found, one in each extremnal intensity surface (highest and lowest). When

there is not enough contrast among the intensity surfaces, then only one elliptic point can be ro-

bustly recovered, and Giraudon and Deriche call these junctions "vertices like corners." Overall, the

technique shows much promise in localizing junctions accurately. One issue not addressed is that

of false positives. Elliptic points near a zero crossing generated by noise might be registered as a

junction. The only technique they apparently use to eliminate these responses is a threshold on the

gradient magnitude.

5.2.3 Gradient-Based Approaches

Other systems that try to restore junctions from edge maps either change the way the gradient is

computed or look for certain properties of the gradient nearby junctions. We now turn our attention

to some of these methods.

One simple method for reconstructing broken junctions from Canny edges is to group together

all of the edges incident to a junction. This can be done by applying a thresholding operation

to the gradient magnitude. This method, developed by Huttenlocher and Cass [8) for a larger 3D

recognition system, relies on the fact that the gradient magnitude of the points in the gap between the

endpoint(s) of the disconnected edge(s) and the junction is high. All pixels with gradient magnitude

above a certain threshold are "turned on", producing connected blobs in the image. All the incident
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Figure 25: Gennert's half-edge operator.

C &ab

Figure 26: When Gennert's half edge operator is applied at point P oriented along edge ab, it ignores

surface C.

edges of a junction should be connected to the same blob. From our analysis of section 2. for

junctions affected by vanishing gradients, the gradient threshold should be chosen equal to IVfI at

the nearby saddle point.

Gennert (13], noting that edge detectors generally perform poorly at junctions, has explored

using directionally selective operators that ignore one side of the image at the point of application, a

technique that finds "half edges." Figure 25 shows an example filter for a particular orientation. The

operators directionally smooth the image and take the gradient, each time ignoring half the image.

Thus, when an operator is applied in the gap area at a point P between two given surfaces (see

figure 26), and it is oriented so that the third surface of the junction is being ignored, the gradient

is not affected by the third surface. This reduces the deleterious effects of inter-edge gradient

interference. Edge points are found by applying the directional operator to the image at many

orientations. At each orientation, the point can be labeled an edge if the following conditions are met:

(a) the edge detector output is above the estimated noise, (b) the output of the detector at (X, y, 0) is

greater than in directions perpendicular to 0, a step similar to non-maximum suppression in Canny,

and (c) the output at (z, y, 8) is greater than the values at nearby values of 0. Unfortunately, the

idea is expensive to implement because convolutional operators must be applied in many directions

at each point. Also, the results that Gennert shows are disappointing in that the junctions are not

restored and the edges are more noise sensitive than Canny edges.
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Lacroix [22] has investigated a generalization of the non-maximum suppression step to avoid

disconnecting junctions. In her modified nms algorithm, each point in the image maintains two

counters, a v counter that records how many times the point was visited during urns, and an m
counter that remembers how many times that point was a maximum. For each point (x, y), we visit

three points in the image: the original point (x, y), the point in the direction of the gradient, and the

point in the opposite direction. The v counter in all three points is incremented and the point that

has the highest gradient magnitu& increments its m counter. After all points have been visited,

"a "Likelihood of Being an Edge" (LBE) measure, defined as m/v, is used for determining whether

"a point is an edge point. Since strong edge points always have the maximum gradient magnitude

when visited, m should be equal to v, or LBE = I for these points. Thus, all points for which LBE

= 1 are immediately accepted as edge points. If a point is never a maximum (m = 0), it certainly

cannot be an edge point, so points with LBE = 0 are immediately rejected as edge points. Points

with LBE measures between 0 and 1 have their fate decided by a contour follower; they will be

incorporated as edge points if they are the natural extensions of contours of LBE = 1. Lacroix

shows a simple example of her modified nms algorithm correctly detecting a T junction, with no

disconnected edges. One of the disadvantages of her algorithm as I see it, however, is that updating

rule for the m counter is not intuitive, as a point does not have to be a local max for its m field to

be incremented - the two lesser points can be on one "side" of the maximum.

Finally, Korn [21] has advocated generalizing the non-maximum suppression stage by looking for

a maximum or minimum in the gradient in four search directions, along the z and y axes and along

the diagonals. In his analysis, he noticed that the gradient direction was skewed near junctions and

not representative of the edge perpendicular. This led him to suggest changing nms to look for a

maximum in the gradient in any of four search directions. Although he also mentions looking for

minima in the gradient, he does not motivate the search for minima. Minima need to be used in order

to process a particular example correctly. Indeed, the example is one that is afflicted by vanishing
gradients, where, according to our model, using max bow ties will not work. The disconnected edge

that the minima rule reconnects to the junction forms a very sharp angle with another incident edge.

Furthermore, the surface between the two edges is the darkest surface in the junction. Thus, the

junction fits our model for vanishing gradients.
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6 Summary

This paper began with the observation that gradient-based edge detectors conunonly fragment

edges at junctions. One goal of this paper has been to explore two causes of edge fragmentation by

looking at the image gradient and zero crossings of the second differential operators V2 and "-2-

First, zero crossings of V 2 f and a naturally pair junction edges in twos, except for structurally

unstable hyperbolic points. As the amount of image smoothing is increased, the edge pairs "repel"

each other more, enlarging the gaps in edge maps. Assuming that an authentication measure is used

to suppress phantom edges, the real edges paired with them will terminate near the junction in a

disconnected endpoint. A second cause of fragmentation at junctions is the destructive interference

of opposing edge gradients caused by smoothing. This effect, called vanishing gradients, contributes

to edge fragmentation by decreasing the gradient magnitude at junctions. This increases the 82

8n
2

operator's sensitivity to noise and quantization, possibly causing two real edges to break apart. The

destructive interference of edge gradients forms a saddle point in the gradient magnitude near the

junction. We hope this analysis will help researchers understand better the properties of the gradient

and zero crossings near junctions.

We used the gradient analysis to develop two techniques for filling the gaps at junctions by

extending the endpoints of disconnected edges. One technique is to follow the disconnected edge's

gradient ridge until it reaches other junction edges. Secondly, for junctions affected by vanishing

gradients, the minimum direction of the nearby saddle point bridges the gap between the discon-

nected edge and other junction edges. To implement these rules, we developed a representation for

the gradient called the bow tie map, which exposes gradient ridges, valleys, and saddle point.. We

demonstrated a junction detector built using these endpoint extension techniques. It performs well

with real edges, but suffers from attaching "noise" edges onto real edges. Overall, the main con-

tributions of the junction detector are the bow tie map and the gradient-based rules for extending

disconnected edges.
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Figure 27: The region specified by our intensity surface model.

A An Analytical Model for an n-ary Junction

This appendix derives analytical expressions for the partial derivatives in z and y of f (x, y), the

smoothed intensity function of the n-ary junction introduced in section 2 (see figure 2). From these

partial derivatives we shall compute differential operators of interest: the gradient magnitude I~f 1,
the laplacian V~f, the second directional derivative •, and Clark's authentication measure X [10].

Recall from section 2 that our model of an n-ary junction is an intersection of n regions of

constant intensity ri, i = 0. .... , n - 1. Each region ri can be constructed by multiplying ri by

appropriate unit step functions that select the value ri within its region. The piecewise constant

intensity function I(x, y) is simply the sum of n region terms,

n-1
l(z, y) = E regioni.

i=0
The region term for region ri, bounded by edges at angles Oi and 40i (see figure 27), is

regioni = ri u(y - m#, x)u(mo, z - y),(1

where is, = tandix and mer = tana i. The first unit step selects the half plane above y = me, x, and

the second unit step selects the half plane below y = nro. In this model for regioni, Oi and ti are

restricted to the range -90s < Oi,mui < 90d , but very similar models (measuring angles relative to

the y axis, for instance) can help relieve this restriction. Another restriction is mi - Oi < 180.; we

will use another model to handle this case.

Having modeled each intensity region ri, we want to compute partial derivatives of the smoothed

intensity function f(z, y), where

f(z,y) = I(z,y) eg(z,iy,a),

z2'.2and G(z,y, = tn a -d , t- a These partials will enable us to computlanhe following differential
2•-•'ra e

operators:

fl3n = I;.2 t G y , (2)
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Vff = I. +f
2f _ f..2 f.. + 2fzfyf + fyyfy

an2f.+ 2

af L9zf"
X = -an Ons

Since convolution and differentiation are linear operators, we can find the partials of f(x, y) by
computing the partials of each region convolved with G(z, y, or). Thus, we can carry out the analysis
for just one region ri and sum the results to get the desired partial. We have

f (x,y) = (x,y) * G(x,y,a)

n-1

E • region/• G(* , y, a) since convolution is linear.
i=O

In this appendix we will compute the first partial in x, fý(x, y), and y, fy(x, y); second and third

partials follow by further differentiation. Let f-,i be the partial of region ri in z,

f.,i = 0 region, * G(z, y, a).

Again, we find f_ by summing over regions:

n-i13 = • f3,,.
i=O

Now, to compute fý,i for region ri from equation 1:

S--o riuy1 - y' - mni(x - z'))u(mcki(x - z') - y + y')G(x',y', )dz'dy'

-rime, fL 6((y - y'- - -'))u(m x• -')- y + i')G(', y',1,)dx'dy' +

rimoL f u(y- y' - mei ))((m (z - z') - y + +' ' ' dx'dy'

Letting y' = y - rni(z - z') in the first term and y' = y - ms, (Z - z') in the second:00
= -rime J u(m, (z'- - m') (z - z'))G(x',y - rni(x - z'), r)dz' +

r f- u(mo,(x - z') - me,(x - z'))G(x', y- mo, (z - x'), a)dx'

Since mo, > mo, in our model, the unit step selects z' < z:

= -- rime, G(z',y - mai(x - z'),oa) + ri m L G(z',y - mrn, (z - r'), o) (3)

Thus, we have decomposed the partial fr,i into two terms that separate the parameters Oi and

Oi. The 6i term gives fe,i along the edge y = mez and the 4Oi term along the edge y = mrr,z. Since
the adjacent regions ri and ri-i share the same bounding edge ei (Oi for ri equals 4,i_ for region

ri-1, see figure 28), we can combine terms frork. ri and ri-l for edge ei. Define di = ri-1 - ri. Then
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Figure 28: Because regions ri- 1 and ri share edge ei in common, terms from r~s and r'-ls contri-

bution to f. may be combined.

Y
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"Variations in edge contributions to partials

Sregion integration limits variable of integration
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Figure 29: A different type of intensity model for regioni is used in each of the four regions 1, 11, III,

and IV.

the contribution of edge ej to f, is

med.d G(z', y - m (- '),o)d' (4)

Thus, to compute f,, we can either sum equation 3 over regions or equation 4 over edges.

Summing 4 over edges is better because of the combined terms. Since our model for region ri is
limited to - 90 0 < Oj, Oi < 90', we need to use a set of models that will cover all possible angles.

We divide the zy plane into four regions (see figure 29) and use a different model in each. The

contribution of edge ei to f. for each type of region model is presented in table 3. The slight
differences in region models give rise to the differences in integration limits and the variable of

integration. For regions II and IV, the angle ai, measured from the positive y axis (see figure 29),

is used to avoid problems with the Oi = ±90* case in region I (me, Is,=±9o= tan ±90' = 0o).

The analysis for fl is similar and yields the contributions to edge e, listed in table 4. Second and

third partial derivatives can be found through further differentiation. For instance, the contribution
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region contribution of ei to f•
I meaidi f.G(z',y - rno,(x - XI),a)dx'

II di f .,, G(z - rn., (y - y'), y', a)dy'
III -mo.di f ' G(-Iy - me,(x -

IV -di f,' G(x - 7n.,(y - y'),y', o)dy'

Table 3: Edge contributions to f, by region.

region contribution of ei to fy

I -di f. G(z',y - me,(x - x'),o,)dx'
iI -m0 , d6 f!. G(x - -,(y-y'),y',a)dy'

III dk f: G(x', y - me, (x - X'),a)dx'
IV m0 , di f7 GC(z - rn,,(y- y'),y',a)dy'

Table 4: Edge contributions to fy by region.

of edge ei to f, in region I is

mni di [G(z,y,o) + f n*'(y- meu(z - t)) G(z', y - mo (X - X'),a)dz']

d d
(helpful fact: _ f(, •/x= f(xx) +f -f(z,x')dz)

Using these equations for the partials of f(z, y) for each edge ei, we simply sum over the edges

to get the final partials fz, fv, fx•, and so on. From here, we can use equations 2 to compute the

desired differential operators over f(z, y).

On a final note, we mentioned that the modeled intensity for region ri in equation 1 restricts 9i

and 4 i to Oi - Oi < 1800. For 4i - 9. > 180', we must use the new model

region/ = ri [u(y - mez) + u(y - mniz)u(mnz - y)].

Running this new model through the same analysis as before (including combining two edge terms

from adjacent regions) yields exactly the same results for the edge contributions to the partials.
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B Fitting Cubics to Edges

In this appendix, we develop a method for fitting cubic polynomials to edges. In our junction

detection algorithm, we use the smoothness of fitted cubics to evaluate how well two edge fragments
"continue" with one another during the gap filling stage. We measure a cubic's smoothness using

its second derivative, which we will examine after showing how to fit a cubic to a list of edge points.

Suppose that we have a list of n edge points (zi, yi), 1 < i < n. The cubic polynomial that we
fit to these points is of the form (p.(t),py(t)) = (a.t 3 + b~t' + c~t + d., at 3 + b~t2 + ct + dy). Thus,

there are actually two cubics, one for z and one for y. We shall deal with the z and y coordinates

separately, fitting p,(t) to the zi's and h•(t) to the yi's. We demonstrate the fitting procedure for

the z coordinates only; the yi's fitting is similar.

We fit the zi's to the polynomial pz(t) by minimizing the summed squared error between the

points and n points on the cubic. The error is given by

n
E = Z(Dp(t) - XX), (5)

i-=1

where ti is the point on the cubic closest to zi; i.e. p.(ti) ;z xi. We have freedom in choosing the

ti's - minimizing the expression for E will make them close to the zi's.. We basically want to keep
the parametric distance ti - ti-1 roughly proportional to the Euclidean distance 1zi - xi-1. We can

accomplish this by setting t, = 1, tn = n, and scaling the intermediate ti's by their distance along

the piecewise linear fit to the list of points

Ei- l- Xj-l
t, = 1 + (n - 1)Eý=n I., Xj-•l

To minimize the error E, we differentiate equation 5 with respect to the parameters for p,(t), a,

b, c, and d and set the partial derivatives to zero. This leads to the following set of equations

n

2 -,)t3 = 0

2 D(p(t) - xi)t& = 0
i=1

n E(p.(ti) - Zi)ti = 0
i=1

2 •(p(t 1 ) - X,) = 0
i=1

These can be rewritten as

Z(a-t3 + bt? + c~ti + d,)t3 = 3zt3
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Z (at~ + b~t~ + cxti d, ai,t

i=Ii=
n ni

D a~,ti + b~3+ c~t1 + d,)ti zit,

i=1 i=1

which, in turn, can be written in matrix form to isolate the cubic parameters

1 0 t! E7 ti a En XJ3

EnI t! E!--- t4 En= t? E-7~ i

t F!,-I t3 EZn t, En 1 d [ n

Now, we simply solve this linear system for a, b, c, and d, the parameters of the cubic px(t).

We used a "second derivative" measure to judge the smoothness of a cubic fit during the gap

filling phase of our junction detector. Again, the second derivative is closely related to curvature

(equal to curvature when the curve is parameterized by arclength), so sampling the second derivative

should give a good estimate of the cubic's smoothness (smooth curves will have low measures). The

measure is simply the sum of the magnitude of the second derivative at the ti's:
n

second derivative measure = (pi(t 1 )) 2 + (41(t,)) 2 ,
i=1

where pý.(t) = 6a , t + 2b, and py(t) = 6a~t + 2by.

43



S

References

[11 Dana H. Ballard and Chrisopher M. Brown. Computer Vision. Prentice-Hall, Englewood Cliffs.

NJ, 1982.

[2] Fredrik Bergholm. Edge focusing. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 9(6):726-740, 1987.

[3] Valdis Berzins. Accuracy of laplacian edge detectors. Computer Vision, Graphics, and Image

Processing, 27:195-210, 1984.

[4] David J. Beymer. Junctions: Their detection and use for grouping in images. Master's thesis,

Massachusetts Institute of Technology, 1989.

[51 Andrew Blake and Andrew Zisserman. Visual Reconstruction. The MIT Press, Cambridge.

MA, 1987.

[6] R.C. Bolles and R.A. Cain. Recognizing and locating partially visible objects: The local-

feature-focus method. International Journal of Robotics Research, 1(3):57-82, 1982.

[7] John F. Canny. A computational approach to edge detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 8(6):679-698, 1986.

[8] Todd A. Cass and Daniel P. Huttenlocher. A massively parallel implementation of a three-
dimensional object recognition system. unpublished manuscript, 1988.

[9] Indranil Chakravarty. A generalized line and junction labeling scheme with applications to scene

analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1(2):202-205, 1979.

[10] James J. Clark. Authenticating edges produced by zero-crossing algorithms. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 11:43-57, 1989.

[11] M.B. Clowes. On seeing things. Artificial Intelligence, 2:79-116, 1971.

[12] Stuart Geman and Don Geman. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721-

741, 1984.

[13] Michael A. Gennert. Detecting half-edges and vertices in images. In Proceedings IEEE Conf.

on Computer Vision and Pattern Recognition, pages 552-557, 1986.

[14] Gerard Giraudon and Rachid Deriche. On corner and vertex detection. In Proceedings IEEE

Conf. on Computer Vision and Pattern Recognition, pages 650-655, Lahaina, Maui, Hawaii,

1991.

[15] A. Guzman. Computer recognition of three dimensional objects in a visual scene. Technical

Report MAC-TR-59, MIT, 1968.

44



[16] Robert M. Haralick. Digital step edges from zero crossings of second directional derivatives.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:58-68, 1984.

[17] Berthold K. P. Horn. The Binford-Horn LINE-FINDER. A.I. Memo No. 285, Artificial Intelli-

gence Laboratory, Massachusetts Institute of Technology, 1971.

[18] D.A. Huffman. Impossible objects as nonsense sentences. In E. B. Meltzer and D. Michie,

editors, Machine Intelligence, volume 6. Edinburgh Univ. Press, Edinburgh, U.K., 1971.

[19] Daniel P. Huttenlocher. Three-dimensional recognition of solid objects from a two-dimensional

image. Technical Report AI-TR 1045, Artificial Intelligence Laboratory, Massachusetts Institute

of Technology, 1988.

[20] T. Kanade. Recovery of the three dimensional shape of an object from a single view. Artificial

Intelligence, 17:409-461, 1981.

[211 Axel F. Korn. Toward a symbolic representation of intensity changes in images. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 10(5):610-625, 1988.

[22] Vinciane Lacroix. A three-module strategy for edge detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 10(6):803-810, 1988.

[23] Yehezkel Lamdan and Haimn J. Wolfson. Geometric hashing: A general and efficient model-based

recognition scheme. Technical Report 368, New York University, 1988.

[24] James S. J. Lee, Robert M. Haralick, and Linda G. Shapiro. Morphologic edge detection. IEEE

Transactions on Robotics and Automation, 3(2):142-156, 1987.

[25] Shih Jong Lee, Robert M. Haralick, and Ming Chua Zhang. Understanding objects with curved

surfaces from a single perspective view of boundaries. Artificial Intelligence, 26:145-169, 1985.

[26] David G. Lowe. Perceptual Organization and Visual Recognition. Kluwer Academic Publishers,

Boston, 1985.

[27] A.K. Mackworth. Interpreting pictures of polyhedral scenes. Artificial Intelligence, 4(2):121-

137, 1973.

[281 Jitendra Malik. Interpreting Line Drawings of Curved Objects. PhD thesis, Stanford University.

1986.

[29] David Mart and Ellen Hildreth. Theory of edge detection. Proceedings of the Royal Society of

London, B(207):187-217, 1980.

[30] J. Marroquin, S. Mitter, and Tomaso Poggio. Probabilistic solution of ill-posed problems in

computational vision. In Proceedings Image Understanding Workshop, pages 293-309, Miami

Beach, FL, December 1985.

45



[311 E. De Micheli, B. Caprile, P. Ottonello, and V. Torre. Localization and noise in edge detectioll.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(10):1106-1117, 1989.

[32] J. Alison Noble. Morphological feature detection. In Proceedings of the International ('onference

on Computer Vision, pages 112-116, Dec 1988.

[331 Pietro Perona and Jitendra Malik. Scale-space and edge detection using anisotropic diffusion.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7):629-639, 1990.

[34] Azriel Rosenfeld and Avinash C. Kak. Digital Picture Processing, volume 2. Academic Press,
New York, 1982.

[35] Azriel Rosenfeld and Mark Thurston. Edge and curve detection for visual scene analysis. IEEE
Transactions on Computers, C-20(5):562-569, 1971.

[36] A. Sha'ashua and S. UUman. Structural saliency: The detection of globally salient structures
using a locally connected network. In Proceedings of the International Conference on Computer

Vision, pages 321-327, dec 1988.

[37] Vincent Torre and Tomaso Poggio. On edge detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 8(2), 1986.

[38] Lewis W. Tucker, Carl R. Feynman, and Donna M. Fritzsche. Object recognition using the
connection machine. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition,
pages 871-878, Ann Arbor, Michigan, 1988.

[39] Shimon Ullman. Maximizing rigitity: The incremental recovery of 3-d structure from rigid and
rubbery motion. A.I. Memo No. 721, Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, 1983.

[40] David L. Waltz. Understanding line drawings of scenes with shadows. In P. Winston, editor,

The Psychology of Computer Vision. McGraw-Hill, New York, 1975.

[41] Andrew P. Witkin. Scale-space filtering. In Proceedings IJCAL pages 1019-1022, 1983.

46


